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Abstract

We propose a general method for modelling transformation paths of multi-phase materials such
that elastic moduli can be fitted exactly. The energy landscape obtained in this way is global
and automatically enjoys the correct symmetries. The method is applied to the triple point of
zirconia, where tetragonal, orthorhombic (orthoI), and monoclinic phases meet. An explicit and
relatively simple expression yields a phenomenological model in the two-dimensional space spanned
by a set of order parameters. We also show how to extend this energy to the apparently first fully
three-dimensional model with an exact fit of all given elastic moduli.

1 Introduction

We propose a method to derive an explicit phenomenological model of several coexisting stable phases
and the relevant transformation paths. The focus is on solid-solid phase transitions. A detailed un-
derstanding of the transformation mechanisms is essential both for theory and applications of phase
transitions. In theory, the framework of the analysis of solid-solid phase transformations is well es-
tablished: since diffusion and re-ordering processes are usually negligible, these materials can be well
approximated in the realm of nonlinear elasticity. In practice, any constitutive modelling requires an
explicit expression for the energy density. It is remarkable that there are very few explicit energy
densities available for three space dimensions that interpolate key data such as elastic moduli exactly.

The relative shortage of explicit expressions for energy functions is even more surprising in the light
of the subject’s long history. The analysis of strain- and temperature-dependent energy functions was
initiated by Landau [20]. A more recent line of investigation based on the Cauchy-Born hypothesis
in continuum mechanics can be traced back to Ericksen [10]. A common method for deriving energy
densities is to expand the energy function in invariant polynomials of lowest order and fit as many
degrees of freedom as possible, or to obtain a best fit in some error norm. As for the triple point
of zirconia (ZrO2), when working with an expansion in invariant polynomials, it requires considerable
ingenuity to obtain a reasonable or good match of most moduli [11]; not all moduli can be fitted this
way, let alone further information of the transformation path. This observation is not surprising given
that polynomials offer little flexibility to control the energy along (transformation) paths. It has been
observed [14] that the minimal set of order parameters may lead to unrealistically high estimates for
the thermal activation energy. Consequently, to determine the energy barrier correctly, non-symmetry-
breaking order parameters or, more specifically, invariant polynomials of higher order are employed
in [14]. With the advent of ab initio calculations, data for the transformation point becomes available,
and it is thus reasonable to ask for a method that can provide an exact reproduction of experimental
data obtained along the entire transformation path, including data at the stable phases. With regard
both to the theory and applications of solid phase transitions, there is a general interest in devising
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Figure 1: Left: Visualisation of the input data in a space of invariant polynomials of the strain tensor;
see Section 2.3. Here, the space of invariant polynomials is visualised as a plane. The stable phases
are marked by spheres and the moduli are indicated by quadratic wells around the phases. A trans-
formation path p connecting the stable phases is indicated as a solid line. It is defined in the space of
invariant polynomials and parameterised by the order parameter %0. Middle: A profile φp (dashed) is
defined along the path. Right: The growth away from the path is modelled by a family of paraboloids,
parameterised by the path so that the given elastic moduli are interpolated.

a methodology that allows for the integration of experimental data for multi-phase materials into the
energy density via a straightforward and phenomenological, yet natural approach.

To achieve this aim, we propose an intuitive method. The stable phases are first connected by a path
that mimics the kinematic transformation path (if measurements are available). The path is modelled
in the space of invariant polynomials so that the correct symmetries are automatically ensured. In
Figure 1 (left) such a path is visualised for a material with three stable phases. The wells in the figure
indicate the respective elastic moduli and %0, %1, %2 are the symmetry-adapted coordinates we employ
to deal with the crystalline symmetry (see Section 2.3 below for details). The path is parameterised by
a suitable invariant, here %0. We remark that in general the symmetry-adapted coordinates may form a
collection of manifolds. The framework presented here allows for, under weak assumptions, a reduction
of this nonlinear setting to a linear one, without loss of generality. Consequently, the coordinates are
visualised as a plane in Figure 1. A profile then models the energy along the path and thus has minima
at the stable phases and energy barriers in between; see Figure 1 (middle). In addition, we model the
growth of the energy away from the path. Here, a quadratic growth is chosen, which is sufficient and
keeps the global order low. We first construct at each stable phase a paraboloid that interpolates the
elastic moduli locally, and then interpolate between them along the path. This interpolation can be
interpreted as a continuously deforming paraboloid that slides along the profile curve and blends one
locally fitted paraboloid into the next; see Figure 1 (right). A plot of a schematic energy landscape
obtained this way is shown in Figure 2. In Section 3 we explain why this ansatz gives enough freedom
to fit all elastic moduli exactly.

To demonstrate that this approach is capable of fitting available data, we consider zirconia as a
case study. This choice is motivated by Gibb’s phase rule, according to which a one-component system
can have at most three phases in coexistence, namely at the triple point, which occurs at one specific
combination of pressure and temperature. Thus, a triple point is the most complicated scenario for
single-component materials. Zirconia has a triple point with tetragonal, orthorhombic (orthoI) and
monoclinic phases in coexistence. While the analysis of phase transformations in zirconia is of interest
for applications such as toughening of ceramics, the high pressure and temperature at the triple point
render experimental investigations difficult. Numerical simulations offer an alternative. Yet, they are
currently hampered by a lack of a simple energy function that has minimisers only at experimentally
observed phases, and fits available experimental data exactly. We give such an expression in Section 3.3
and present some numerical simulations in Section 4.

For the triple point of zirconia, a simple count of the degrees of freedoms shows that an invariant
polynomial of lowest order does not offer enough parameters to match all moduli. Higher-order invariant
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Figure 2: A schematic plot of the final energy landscape.

polynomials provide a theoretical remedy for this problem, but are rarely used in practice. One problem
is that the calculations for the derivation become very cumbersome, and it can be hard to verify that
higher-order polynomials do not introduce spurious minima. In addition, the steep growth of higher-
order polynomials often poses a challenge for simulations. At present, the generic Landau strain-energy
function constructed by Truskinovsky and Zanzotto [27] and its augmentation by four new coupling
terms to fit experimental data [11] seem to be the best three-dimensional energies for zirconia available.
In two space dimensions, an approach using splines is able to match all available moduli exactly [9].
While the path from the tetragonal phase to an orthorhombic minimum for a polynomial energy of
lowest order is extremely shallow, splines offer enough flexibility to model a significant energy barrier.
Straightforward numerical simulations with a spline energy can capture the corresponding pattern
formation, while they fail to do so for a polynomial energy [9]. However, the spline energy in [9] itself
involves a finite element simulation and cannot be written down in a simple and concise form; it is also
not evident how to extend it to three dimensions.

The energy in [9] is continuously differentiable (C1) and the authors report that no spurious ef-
fects stemming from the discontinuity in the elastic moduli were ever observed in numerical studies
of boundary value problems. This is in line with other simulations with piecewise defined C1 energy
densities [17]. However, we derive here an energy that is twice continuously differentiable (C2) since
the relevant data involves derivatives up to the second order. Moreover, the construction could easily
be extended to fit an energy density with an arbitrary degree of smoothness.

The framework proposed in this paper renders the task of fitting parameters a profoundly simple one.
This could signify that the construction has a deeper physical significance. Specifically, for a transition
characterised by the softening of a modulus (like the tetragonal-orthorhombic transition considered here)
the chosen path seems to capture the softening remarkably well. Polynomials, on the other hand, are in
general too rigid to accurately model a path determined by a softening direction. Further, a polynomial
expansion of the energy for CuAlNi [13] does not match all elastic moduli, while an approach similar
to the one advocated here does provide a perfect fit for InTl [16], which, like CuZnAl, can undergo a
cubic-to-monoclinic transition. In general, non-polynomial energy densities have been found to be a
good approximation for InTl [18].

2 Relevant data for zirconia

2.1 Transformation paths in zirconia

Zirconia has a triple point near 1.8 GPa and 840 K, where a tetragonal (t), an orthorhombic (o) and a
monoclinic (m) phase meet. A quick review of the crystallographic aspects of these phases is included
here for the reader’s convenience. We choose the tetragonal phase as reference configuration; see Figure 3
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Figure 3: Tetragonal phase with lattice parameters a and b; c1, c2 and c3 denote the axes.

for the relevant primitive tetragonal Bravais lattice. The lattice is spanned by three mutually orthogonal
basis vectors c1, c2 and c3. It is easy to verify that Rπc1 and Rπ/2c3 generate the tetragonal point group
T3, where Rαc denotes the rotation with angle α about axis c (only orientation-preserving symmetry
operations are considered in this paper). We restrict the crystallographic discussion to skeletal lattices;
a visualisation of the movements of the atoms inside the skeletal lattices is given in [11].

There are two orthorhombic and five monoclinic subgroups and it can be seen that there are four
essentially different t–o–m paths [27], going from the tetragonal phase through an orthorhombic to
a monoclinic phase. Based on the best-established t–o orientational relationship of the respective
axes and the coordination of O atoms with the Zr atoms, a transition path has been suggested [27]
which involves the monoclinic group M3 := {1, Rπc3} generated by Rπc3 and the orthorhombic group
O123 := {1, Rπc1 , R

π
c2 , R

π
c3}. Though alternative kinematic paths for the phase transformations in zirconia

have been suggested (e.g., [3, 25]), we follow [27] in considering the transformation mechanism

T3 → O123 →M3.

It is known that the bifurcation associated with the transition T3 → O123 originates from the softening
of the tetragonal modulus C11−C12, while the path T3 →M3 does not directly correspond to a softening
of a tetragonal modulus [11]. This seems natural in the light of the separation of the tetragonal and
the monoclinic phases by the orthorhombic phase which makes the T3 → M3 transition appear as
consecutive bifurcation.

The cubic, tetragonal and monoclinic phases of ZrO2 have been investigated with lattice dynamics
in [19], where the phonon vibrations and the density of states for those phases were determined with
the VASP code for ground state calculations combined with the direct method for dynamics.

2.2 Coordinates of the stable phases

Let y(x) denote the deformation at a point x. The free-energy density per unit reference volume,
henceforth energy function for short, is a function of the deformation gradient Fjk := ∂yj

∂xk
. By frame

indifference, the energy function Φ can be written as a function of C := FTF or equivalently in terms
of the Green-St. Venant strain tensor E := 1

2 (FTF − Id). In Voigt’s notation,

E =


e1

1
2e6

1
2e5

1
2e6 e2

1
2e4

1
2e5

1
2e4 e3


with ej ∈ R, j = 1, . . . , 6. The energy Φ = Φ(e1, . . . , e6) has to be invariant under the tetragonal point
group T3.
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tetragonal orthorhombic monoclinic
e1 0.0 9.39046 · 10−3 4.68924 · 10−2

e2 0.0 −5.39105 · 10−3 8.50962 · 10−3

e3 0.0 1.71769 · 10−2 −5.33516 · 10−4

e4 0.0 0.0 0.0
e5 0.0 0.0 0.0
e6 0.0 0.0 −3.28543 · 10−1

Table 1: The minima in strain space, calculated for 1.8 GPa and 840 K from data for the relevant
lattice parameters in the Appendix of [11]. The data is rounded to the 5th digit.

We calculate the position of the t–o–m phases in strain space for 1.8 GPa and 840 K from data
for the relevant lattice parameters in [11]. The location of the t-o-m phases in strain space is listed in
Table 1.

2.3 Symmetry constraints

For the t-o-m transition under consideration, a set of order parameters is given by e1 − e2 and e6.
Since the transition at the triple point can be described in terms of the order parameters only, we first
derive an energy in e1, e2 and e6 and later augment this energy to an energy that depends on the full
strain tensor. Both for the reduced and the full set of strain variables, we first identify a suitable basis
(a Hilbert basis, see Section 2.3.1) of polynomials % := (%0, . . . , %n−1), where each polynomial depends
on the strain variables. We then construct the energy as a function φ(%), and finally the energy in strain
space for e := (e1, . . . , e6) is Φ(e) := φ(%(e)).

We remark that the choice of the order parameters involves an assumption; to describe the mi-
croscopic deformation of the lattice in a macroscopic manner, we follow the conventional assumption
that the Cauchy-Born hypothesis applies; this hypothesis states that the microscopic lattice deforms
according to the macroscopic deformation. Since we wish to contrast the method presented here with
the polynomial expansion going back to Landau, we follow [11, 27] and consider order parameters which
are functions of the strain as described above. Since the transformation can be well described by the
deformation of one lattice supercell, this seems appropriate. The analysis of phase transitions that
cannot be described in this framework is the topic of a future investigation. Of particular interest in
this instance are phase transitions of multi-lattices; then, the relative shift of the lattices can take place
in a way which violates the Cauchy-Born hypothesis. Thus, the relevant shift has to be incorporated as
additional order parameter in the energy [7]. While this complicates the modelling, the principal ideas
laid out in this article essentially extend to the situation in [7].

2.3.1 Invariants for the Landau contribution

The first step in the construction is to incorporate the symmetry constraints of the tetragonal point
group. As the order parameters show, the t–o–m symmetry breaking takes place in the c1-c2-plane
shown in Figure 3. Thus, we restrict our attention to the corresponding two-dimensional subspace
spanned by c1 and c2; the strain space is then spanned by the three strain variables e1, e2 and e6. For
this subspace, the three polynomials

%0(e1, e2, e6) := (e1 − e2)2
,

%1(e1, e2, e6) := e1 + e2,

%2(e1, e2, e6) := e6
2

(1)

are invariant under the (restriction of the) tetragonal point group. In addition, these polynomials
have the special property that every polynomial %̃ with this invariance can be written as %̃(e1, e2, e6) =
P (%0, %1, %2) for some polynomial P . The mathematical background for this statement is given in [29, 9].
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tetragonal orthorhombic monoclinic
%0 0.0 2.18493 · 10−4 1.47324 · 10−3

%1 0.0 3.99941 · 10−3 5.54020 · 10−2

%2 0.0 0.0 1.07941 · 10−1

%3 0.0 1.71769 · 10−2 −5.33516 · 10−4

Table 2: The location of the minima in orbit space, calculated for the strain data given in Table 1. The
polynomials %4, . . . , %7 in (3) as well as %8, %9 in (5) vanish at all three phases. The data is rounded to
the 5th digit.

In a nutshell, by Hilbert’s Theorem [28], there is a basis %0, . . . , %n−1 such that every invariant polyno-
mial can be written as a polynomial of the polynomial basis, and by Chevalley’s Theorem [5, Theorem A],
there has to be a basis with n = 3 elements for the tetragonal point group. Since the polynomials in (1)
are of lowest degree, they form such a basis. For us, it is convenient to introduce invariants in the order
parameters e1 − e2 and e6, which is why the basis chosen here differs from the one in [9].

We observe that any function of the polynomials in (1) automatically enjoys the correct symme-
try: points in strain space that are mapped to each other under tetragonal symmetry are mapped by
% := (%0, %1, %2) to the same point, while points that are not symmetry related are mapped to different
points by %. The map % is, as %0, %1, %2, a function of the strain; it identifies points in the strain space
which are mapped to each other under the symmetry group. The map % is thus injective on a funda-
mental domain; one way of visualising % is to think of it as a function that maps the entire strain space
to a suitably deformed fundamental domain. The deformation is such that points on the boundary
of the fundamental domain are identified as appropriate. This identification facilitates the definition
of the energy, as can be seen in the toy model of the invariance being defined by a rotation about π

2
in R2; any quadrant is a fundamental domain. If one tries to define the energy on a quadrant, then one
needs to take into account that points on the boundaries are identified (mapped to each other under
the symmetry group) in a pairwise manner. This imposes a constraint on the energy function. The
map % would in this case map the model strain space R2 to the surface of a cone obtained by taking the
fundamental domain (quadrant) and gluing together the boundaries pointwise (e.g., identifying (x, 0)
with (0, x) for x ∈ R for the quadrant {(x, y) | x > 0, y > 0}). Thus, the constraint that points have to
be identified disappears when the map % is applied to the strain space, and the definition of the energy
function simplifies significantly. The image of the strain space R3 under the map % is called orbit space.
Any function defined in orbit space automatically exhibits the correct symmetries. Here, the orbit space
for the Landau contribution is the quadrant

{(%0, %1, %2) | %0 ≥ 0 and %2 ≥ 0} (2)

and the position of the stable phases in orbit space is recorded in Table 2.

2.3.2 Invariants in the three-dimensional setting

Analogous to the two-dimensional basis in (1), the eight invariant polynomials

%0(e1, . . . , e6) := (e1 − e2)2
,

%1(e1, . . . , e6) := e1 + e2,

%2(e1, . . . , e6) := e6
2,

%3(e1, . . . , e6) := e3,

%4(e1, . . . , e6) := e4
2 + e5

2,

%5(e1, . . . , e6) := e4
2e5

2,

%6(e1, . . . , e6) := e4e5e6,

%7(e1, . . . , e6) := e1e4
2 + e2e5

2

(3)
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form a basis in the three-dimensional setting for the full strain tensor with strain variables e1, . . . , e6.
We computed these invariants with the library finvar.lib of Singular [15]. However, tetragonal invari-

ants can also be read off from the literature [26]. In the three-dimensional setting, we employ the same
notation and terminology as introduced for the Landau framework in Section 2.3.1.

We remark that it is also possible to work in symmetry-adapted coordinates, e.g., y1 := e1+e2+e3 to
characterise homogeneous dilations, y2 := 1√

6
(e1 +e2−2e3), y3 := 1√

2
(e1−e2), yj := ej for j ∈ {4, 5, 6}.

This has been done successfully in [11] to simplify the calculations. Yet, in the framework presented
here, it is not less convenient to work directly in strain coordinates.

3 The path-profile construction

3.1 Concept

The proposed construction relies on three simple ingredients: a path in the orbit space to model the
kinematic transformation path, a profile to model the energy along the path, and a paraboloid to model
the growth away from the path.

The invariance of the energy will be automatically obtained by deriving the energy in the space of
invariants, that is, the image of the strain space under the mapping % := (%0, . . . , %n−1); in the two-
dimensional Landau setting, we have n = 3 (see Section 2.3.1), while n = 8 in the full three-dimensional
setting (see Section 2.3.2).

The path must interpolate all stable phases. Here, we select one order parameter to parameterise
the path. Specifically, we work with %0, though other choices are possible as well. Since %0 is an order
parameter, its evaluations at the tetragonal, orthorhombic and monoclinic phases are mutually different.
The ordering is such that the orthorhombic phase separates the tetragonal phase on the left from the
monoclinic phase on the right. We then construct a mapping π : R→ Rn−1 that interpolates the three
phases located at %? = (%?0, . . . , %

?
n−1) for ? ∈ {t, o,m} in the sense that π(%?0) = (%?1, . . . , %

?
n−1). Note

that the n− 1 components πj of π can be modelled independently of each other. The path p can then
be seen either as the graph of the function π, that is, p := {(%0, π(%0)) | %0 ∈ R} ⊂ Rn, or as the zero-set
of the mapping

ψ : Rn → Rn−1, % 7→ (%i − πi(%0))i=1,...,n−1,

p = {% ∈ Rn | ψ(%) = (0, . . . , 0)}; then %t, %o, %m ∈ p. This path approximates the kinematic transition
path and it would not be difficult to accommodate any explicit knowledge of the transformation path,
such as the position of saddle points of the energy. For zirconia, no exact data seems to be available for
the kinematic transformation path other than the position of the stable phases; we thus choose a path
that simply interpolates between the stable phases. Some care must be taken that the path remains
within the orbit space %(R3) for the Landau part, respectively %(R6) in the three-dimensional setting.
This is since the orbit space is defined by homogeneous polynomials, which results in a half-space if the
degree is even. For example, the orbit space (2) for the Landau contribution in Section 2.3.1 is only a
quadrant of R3 because %0 and %2 are polynomials of even degree.

The profile must have global minima at the stable phases, and without loss of generality, we can
choose zero as the value there. We remark that the method proposed here is also suited for fitting
wells of unequal height, for example for a loading experiment. Let φp : R → R+

0 denote the energy
along the path. This profile models the energy barriers (that is, saddles in the three-dimensional energy
landscape) and the wells along the path p. Figure 1 (middle panel) shows such a profile construction.

Finally, a paraboloid is employed to model the growth of the energy away from the transition path.
This choice mirrors the ansatz with invariant polynomials of lowest order. Using quadratic functions
for this purpose results in the slowest possible growth of the energy for which the moduli can be fitted,
and simultaneously yields the lowest degree functions of the invariants. In order to fit the moduli of
elastic phases at the boundary of the orbit space, we need further to introduce a linear contribution
in the invariant polynomials of even degree (cf. the linear behaviour in %0 for the stable phase at the
boundary in Figure 1). Together with a properly chosen path and profile, the combination of linear
and quadratic contributions allows us to match all prescribed elastic moduli at given phases exactly.
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Modulus tetragonal orthorhombic monoclinic
C11 340.0 300.0 312.0
C12 33.0 33.0 35.2
C13 160.0 ? 155.0
C16 3.2
C22 = C11 350.0 350.0
C23 = C13 ? 171.0
C26 4.3
C33 325.0 ? 341.0
C36 9.4
C44 66.0 ? 101.0
C45 −13.9
C55 = C44 ? 81.6
C66 95.0 90.0 66.3

Table 3: Elastic constants of the tetragonal and the monoclinic phase in GPa. Here, C11, . . . , C66 are
the elastic moduli that appear in the standard tetragonal elastic tensor [22]. The tetragonal data is
estimated for 1480 K in [4]; see also Table II of [11]. The monoclinic data is given in [4]. To allow for a
direct comparison with [11], we take the monoclinic data at 1273 K. No experimental data seems to be
available for the orthorhombic phase, which is why we fit the orthorhombic data of [9]. Orthorhombic
moduli where no data to be fitted are available are marked by ?. Empty entries are zero by symmetry.

The paraboloid can be thought of as a lowest order ansatz to match elastic moduli at one phase, and
then modify it continuously along the path so as to match the moduli at the other phases as well.
This is along a similar vein to a lowest order polynomial ansatz, but the sliding paraboloid does not
force us to compromise on the quality of the approximation at some phases. In the examples discussed
below, it is immediately obvious that the interpolated paraboloid remains positive definite, while the
linear contributions for quadratic invariants are always non-negative. We denote the paraboloid by
H : R → R(n−1)×(n−1) with H = (hjk)j,k=1,...n−1 and remark that it suffices to choose H symmetric,
hjk = hkj . The linear contribution is denoted η : Rn → R+

0 .
The energy is then of very simple form, namely

φ(%) := φp(%0) + ψ(%)TH(%0)ψ(%) + η(%). (4)

We show below that this ansatz gives enough freedom to match the available data for zirconia. The
path, the profile and the paraboloid enter as parameters into the fitting process at the phases.

The specific choice of the terms in (4) will be influenced by the requirement that the only global min-
ima of φ are at the given phases. Specifically, we ensure that the energy φ̂(%) := φp(%0)+ψ(%)TH(%0)ψ(%)
without the linear term has no other global minima, which is guaranteed by two observations. On the
one hand, we take care that the paraboloid H(%0) is always positive definite so that φ̂(%) is locally
decreasing in at least one direction at any % /∈ p. On the other hand, the path p itself is constructed in
such a way that it only has the three prescribed minima. The linear term η(%) is constructed such that
it is non-negative everywhere and vanishes at the three phases. We remark that the linear term deforms
the path of lowest energy. Consequently, the path p alone does not determine the physical transition
path and the correction by the linear term has to be taken into account.

3.2 Two-dimensional Landau energy for zirconia

In the two-dimensional setting in the c1-c2-plane of Section 2.3.1, the strain variables are e1, e2 and e6.
The position of the three phases with respect to those coordinates is given in Table 1. The invariants (1)
then give the location of the phases in the orbit space %(R3); see Table 2. Finally, the moduli we want
to reproduce are listed in Table 3.
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Figure 4: Plots of the path components π1 (solid line) and π2 (dashed line) in the Landau construction.
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Figure 5: Diagram of the paths in strain space (the image of these paths under % is the path shown in
Figure 4). The paths emerge at the tetragonal phase (triangle) in the origin and remain in the e1-e2-
plane before bifurcating at the orthorhombic phases (square) in order to reach the monoclinic phases
(circle).

As motivated in Section 3.1, the energy is of the form (4). In particular, the path is parameterised
by %0 and the image of the mapping π has to lie in the half-space {(%1, %2) | %2 ≥ 0}. We construct
both components π1 and π2 as piecewise polynomial functions with two quartic and one quintic segment
that join C2-continuously at the orthorhombic and the monoclinic phase. Moreover, we constrain the
first and second derivatives of the quintic segment to vanish at %0 = 3

2%
m
0 so that it can be continued

C2-continuously as a constant from there on; see Figure 4. The pre-image of the path in strain space is
shown in Figure 5. The profile φp is defined by five polynomial pieces (quintic, quartic, quartic, quartic,
linear) with the same knots as the path plus an additional knot halfway between the orthorhombic and
the monoclinic phase that is used to control the height of this saddle; see Figure 6. As for the sliding
paraboloid H = (hjk)j,k=1,2, it turns out that it can be modelled by a quadratic function h11(%0) and
constants h12, h22. Finally, the linear contribution η is defined as η(%) := η0(%0)%2, where η0 is a quartic
polynomial between the tetragonal and the monoclinic phase that blends C2-continuously into the zero
function at the monoclinic phase. The energy in (4) with the prescribed degrees of freedom can then
be fitted to exactly match the available data; see Table 4 for the parameters.
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range α0 α1 α2 α3 α4 α5

π1 [0, r1] 0.0 0.0 4.7022 · 105 −2.8200 · 109 4.8117 · 1012

[r1, r2] 2.3135 · 10−3 1.9044 · 101 −8.2030 · 104 1.5114 · 108 −5.9481 · 1010

[r2, r3] −2.9790 7.0496 · 103 −6.2815 · 106 2.6637 · 109 −5.3184 · 1011 3.8974 · 1013

[r3,∞) 0.04

π2 [0, r1] 0.0
[r1, r2] −2.5779 · 10−3 3.6758 · 101 −1.8071 · 105 3.3279 · 108 −1.3067 · 1011

[r2, r3] −1.4829 · 101 3.9191 · 104 −4.0634 · 107 2.0834 · 1010 −5.2925 · 1012 5.3360 · 1014

[r3,∞) 0.09

φp [0, r1] 0.0 7.6750 · 101 0.0 −9.2661 · 109 5.5386 · 1013 −9.3070 · 1016

[r1, r1.5] −3.1271 · 10−1 4.6128 · 103 −2.3951 · 107 4.9281 · 1010 −2.8867 · 1013

[r1.5, r2] −5.9011 · 101 2.1287 · 105 −2.7033 · 108 1.4657 · 1011 −2.8986 · 1013

[r2, r3] −1.5810 · 101 3.7594 · 104 −3.2835 · 107 1.2391 · 1010 −1.6829 · 1012

[r3,∞) −2.4932 1.3545 · 103

h11 9.3250 · 101 −1.9951 · 104 1.2759 · 107

h12 −2.8535
h22 7.6778 · 101

η0 [0, r2] 4.7500 · 101 1.9247 · 104 −1.7050 · 108 1.4544 · 1011 −3.6269 · 1013

[r2,∞) 0.0

Table 4: The coefficients of the parameters for the Landau energy. All functions are polynomials of
the form

∑
j αjx

j . For those functions which are defined in a piecewise manner, we list the different
polynomial segments and indicate the parameter range over which they are defined. Here, the first two
knots are the %0-coordinates of the orthorhombic and the monoclinic phase, r1 := %o

0 and r2 := %m
0

(see Table 2), and the third knot is r3 := 3
2%

m
0 . For the profile φp, we introduce a fourth knot r1.5 :=

1
2%

o
0 + 1

2%
m
0 . All polynomial pieces join C2-continuously at the knots. The data is rounded to the 4th

digit.

monoclinic

0

1.0

0.01

0.5 1.0 1.5 2.0 %0¢103

Áp + 0.001

0.001

0.1

orthorhombic

Figure 6: The profile φp along the path from the tetragonal phase (left, at the origin) via the orthorhom-
bic phase (middle) to the monoclinic phase (right). Since the path is a function of %0 = (e1 − e2)2, only
non-negative arguments are meaningful.

We call the energy obtained in this way Landau energy, since it corresponds to the minimisation of
all strain parameters other than the order parameters of the full three-dimensional energy.

We remark that in this framework, it is not hard to check that there are no other local minimisers.
To do so, it is not necessary to verify that the gradient of the energy vanishes in the interior of the orbit
space (though this is possible here since there are no algebraic dependencies of quantities involved).
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range α0 α1 α2 α3 α4 α5

π1 [0, r1] 0.0 0.0 1.8977 · 105 −6.8075 · 108 8.9528 · 1011

[r1, r2] −1.6530 · 10−3 3.2410 · 101 −4.7474 · 104 8.8152 · 107 −3.5987 · 1010

[r2, r3] 1.7679 · 100 −5.9887 · 103 7.8755 · 106 −4.9345 · 109 1.4853 · 1012 −1.7313 · 1014

[r3,∞) 0.04

π2 [0, r1] 0.0
[r1, r2] −2.5754 · 10−3 3.6722 · 101 −1.8053 · 105 3.3245 · 108 −1.3050 · 1011

[r2, r3] −1.4720 · 101 3.8888 · 104 −4.0299 · 107 2.0652 · 1010 −5.2436 · 1012 5.2841 · 1014

[r3,∞) 0.09

φp [0, r1] 0.0 1.3250 · 101 0.0 −1.6388 · 109 9.9194 · 1012 −1.6886 · 1016

[r1, r1.5] −3.1916 · 10−1 4.6863 · 103 −2.4226 · 107 4.9657 · 1010 −2.9035 · 1013

[r1.5, r2] −5.9131 · 101 2.1328 · 105 −2.7084 · 108 1.4685 · 1011 −2.9042 · 1013

[r2, r3] −1.5980 · 101 3.7967 · 104 −3.3138 · 107 1.2497 · 1010 −1.6966 · 1012

[r3,∞) −2.4993 1.3572 · 103

h11 1.3250 · 101 −2.0969 · 104 1.2759 · 107

h12 −2.8535
h22 7.5620 · 101

η0 [0, r2] 4.7500 · 101 1.9247 · 104 −1.7050 · 108 1.4544 · 1011 −3.6269 · 1013

[r2,∞) 0.0

Table 5: The coefficients of the parameters for the contribution Φ126 to the three-dimensional energy.
All functions are polynomials of the form

∑
j αjx

j . For those functions which are defined in a piecewise
manner, we list the different polynomial segments and indicate the parameter range over which they
are defined. The four knots r1, r1.5, r2, r3 are the same as in Table 4. All polynomial pieces join
C2-continuously at the knots. The data is rounded to the 4th digit.

Instead, we can argue in a simple manner, since the energy function is always decreasing in some
direction in the interior of %(R3) (except at the global minimisers, which are the t–o–m phases). The
same behaviour can be verified for the boundary of the orbit space ∂%(R3) by inspecting the restriction
of the energy function to the boundary. The coefficients shown in Table 4 have different orders of
magnitude since the input data values (the position of phases and the moduli) differ by orders of
magnitude; see Tables 2 and 3. Figure 4 shows that the constructed functions are nevertheless regular,
without strong oscillations.

3.3 Three-dimensional energy function for zirconia

The two-dimensional construction can be extended to the full three-dimensional setting in a rather
straightforward way. We keep the Landau energy of Section 3.2, here denoted Φ126 to indicate its
dependence on e1, e2 and e6. Since the energetic contributions to be constructed below contribute to
the moduli with indices 1, 2 and 6, the parameters of the Landau construction change, and their new
values are given in Table 5.

We augment Φ126 additively by a term Φ456 in e4, e5 and e6 to fit C44, C55 and C45. Here, we work
in strain space, rather than in orbit space, and employ the invariants %2 and

%8(e1, . . . , e6) := e1
2e4

2 + e2
2e5

2,

%9(e1, . . . , e6) := (e4
2 + e5

2)(1 + e6
2) + 4e4e5e6.

(5)

It is easy to verify that %8 = %1%7 + 1
4 (%0 − %1

2)%4 and %9 = (1 + %2)%4 + 4%6. The two latter invariants
are chosen since they are non-negative. It turns out that the ansatz

Φ456 := (a0 + a1%2)%4 + b%8 + c%9 (6)

is sufficient to fit the moduli C44, C45 and C55. This form is considerably simpler than the contribu-
tions defined in orbit space, but possible only because so few moduli need to be fitted. Since Φ456 is
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a0 2.24230 · 101

a1 5.86247 · 101

b 4.56152 · 103

c 1.05770 · 101

Table 6: The coefficients of the parameters for Φ456 defined in (6), which constitutes one contribution
to the three-dimensional energy. The data is rounded to the 5th digit.

range α0 α1 α2 α3 α4 α5 α6

π1 [0, r1] 0.0 3.048 · 102 −1.459 · 106 2.324 · 109

[r1,∞) 2.460 · 10−2 −3.294 · 101 8.656 · 104 −3.411 · 107

π2 [0, r1] 0.0
[r1, r4] −7.825 · 10−3 1.172 · 102 −6.299 · 105 1.421 · 109 −1.206 · 1012 4.376 · 1014 −5.784 · 1016

[r4,∞) 8.494 · 10−2

π3 [0, r1] 0.0 2.285 · 102 −1.012 · 106 1.492 · 109

[r1,∞) 1.538 · 10−2 1.732 · 101 −4.550 · 104 1.793 · 107

φp [0, r1] 0.0 6.350 · 101 0.0 −7.647 · 109 4.565 · 1013 −7.660 · 1016

[r1, r3] 5.511 · 10−3 −6.118 · 101 2.207 · 105 −2.902 · 108 1.596 · 1011 −3.145 · 1013

[r3,∞) −1.427 · 10−3 9.504 · 10−1

h11 8.000 · 101 1.018 · 103

h13 −7.153
h22 1.158
h33 8.250 · 101 4.412 · 103

Table 7: The coefficients of the parameters for the contribution Φ3 to the three-dimensional energy. All
functions are polynomials of the form

∑
j αjx

j . For those functions which are defined in a piecewise
manner, we list the different polynomial segments and indicate the parameter range over which they
are defined. The knots are r1 := %o

0, r2 := %m
0 (see Table 2), r3 := 1.554 · 10−3 and r4 := 2.210 · 10−3.

All polynomial pieces join C2-continuously at the knots. The data is rounded to the 3rd digit.

non-negative, it is easy to verify that minima exist only at the tetragonal, the orthorhombic and the
monoclinic phase. The parameters for Φ456 are given in Table 6.

To match the elastic moduli involving the strain component e3, we employ the path-profile construc-
tion with the four invariants %̃0 := %0, %̃1 := %1 + %3, %̃2 := %2, %̃3 := %3. Again, we choose the invariant
%̃0 for the parameterisation of the path, the profile and the sliding paraboloid. As for the latter, it
turns out that it suffices to involve only h11, h22, h13 and h33, and set the other components to zero.
Moreover, the linear contribution η is not needed for this energetic contribution that we denote Φ3; see
Table 7 for details.

An energy that fits exactly all available moduli is then

Φ := Φ126 + Φ456 + Φ3, (7)

considered as a function in strain space, that is, the invariants are evaluated with the strain variables.
An examination of the energy reveals that no global minimisers other than the prescribed ones exist.

Local minimisers could in principle exist due to the addition of three energetic terms, because gradients
could cancel out locally. An analysis of the saddle point via Newton search as in [16] could be employed
to examine the existence of local minima.

4 Physical interpretation and numerical illustration

One key feature of the approach advocated here is that it allows the modelling of the lowest energy
path between stable phases. The conventional polynomial expansion is less suitable for the description
of this transition path. This is because a polynomial interpolation of several points already leads in
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normal circumstances to significant oscillations, while no such oscillations are expected for a macro-
scopic energy density. Since we propose a method that can model the energy along this low-energy
transition path with arbitrary precision, the question arises as to how this path can be determined for
arbitrary phase-transforming materials. One suitable method would be an ab initio calculation, where
a sufficiently large region in the strain space is explored. Such a sequence of simulations would in
principle determine the path and the elastic moduli along the path, though the detection of this path in
higher space dimensions is far from trivial. Alternatively, an experiment where a specimen is exposed
to forces that trigger a transformation along the path can then be used to determine the moduli ex-
perimentally. The high temperature and pressure of the triple point, however, pose a serious challenge
for such a sophisticated experiment, and we are not aware of such data. The available measurements
for the elastic moduli of the stable phases already have significant error margins, in particular for the
off-diagonal moduli; the problem of precise measurements would be significantly accentuated for the
sequence of out-of-equilibrium measurements of the moduli along the transition path. In principle,
however, such experiments are possible since a suitable load transforms a point on the transition path
into an equilibrium configuration.

The energy barriers along the path influence various physical quantities. For example, the trans-
formation stress (i.e., the stress required to trigger a stress-induced transformation) depends on the
height of the profile. The reason is that the energy barrier defined by the profile is on the mountain
pass connection between minima, and a mountain pass connection is the energetically most favourable
connection. The height h of the mountain pass is a function of the energy barrier and the applied stress.
For example, for a spring-chain model, it can be shown rigorously [24] that the transition is given by
the mountain pass, even if there are many possible ways to transform from one metastable state to
another.

We restrict the analysis here to the isothermal situation; the inclusion of thermal effects is discussed
elsewhere [16]. In [16], the focus is on the influence of stress on the transformation temperature via
the Clausius-Clapeyron equation. We mention here that the energy barriers influence the dependence
of the specific heat on the temperature. For first order phase transitions, the temperature dependence
of the specific heat exhibits a sharp peak around the transformation temperature due to the presence
of latent heat. The latent heat released during the transformation is given by the area enclosed by the
hysteresis loop of the transformation; this area in turn depends on the transformation strain.

While experiments at the high temperature and pressure of the triple point are very difficult, nu-
merical simulations offer the possibility to analyse the formation of microstructures in this regime of
particular interest.

One question of interest is the propagation of a phase front. In the static situation, one would
expect different effects to compete against each other. Namely, on the one hand the transition path
constructed here is the energetically favourable path for the transformation of one phase into another.
On the other hand, if the two phases form a sharp interface, then this imposes a constraint since the
displacement has to be continuous across the interface. It is well known that this constraint can be
expressed as the condition that the strain gradients of the two phases, A and B, say, are connected by
a rank-one line, A−B = a⊗ b with a, b ∈ Rn [1], here with n = 2 or n = 3. Thus, there is competition
between the energetically favourable transformation path and a transition along a rank-one line that
connects two phases. We investigate this competition in the presence of dynamics and interfacial energy.
Specifically, we employ the finite element method to study the behaviour of a system consisting of the
Landau energy, a higher gradient surface energy term, and the kinetic energy. We also add a viscosity
term to slowly relax the system to a stationary point. This leads to the equation of motion

ü = Div σ − γ∆2u+ β∆u̇

for the displacement u = u(x, t), with coefficients γ and β controlling the surface energy and viscosity,
respectively. The divergence of the stress σ = ∂Φ(F )

∂F is taken row-wise.
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Figure 7: Results of the simulation for a tetragonal-orthorhombic phase boundary. Initial values and
boundary values are on a rank 1 connection in between the two minima. The left panel shows the elastic
energy density Φ(%(x)), the right panel shows the clear distinction between the two phases in the order
parameter %0.

4.1 Numerical solution method

We use a finite element discretisation with basis functions derived from Loop subdivision surfaces, which
can be thought of as a generalisation of multivariate splines to tessellations of arbitrary topology [21].
We resort to such a discretisation of C1-smoothness to correctly evaluate the strain gradient energy
terms, which contain higher order derivatives. The use of subdivision surfaces for this problem has been
suggested in [6]. The simulation employed is very similar to the one used in [8] and more information
on the method can be found there. We do, however, use the method described in [2] to fix the clamped
boundary conditions (i.e., Dirichlet and natural Neumann boundary data for the 4th order initial-
boundary value problem). A constant affine tilt Ftilt is added to the gradient of u in the computation
to achieve non-zero boundary conditions. In order to advance the system in time, we use an explicit
Newmark scheme. The computational domain is a square of size 1, discretised with 28 293 triangular
elements using distmesh [23].

4.2 Computational results

Figure 7 shows the relaxed state of a simulation with tilt

F t−o
tilt =

(
4.6608 −3.5505
3.5505 −2.7154

)
· 10−3 and γ = 0.4, β = 0.1.

This tilt has been chosen since it is located on a rank-1-connection, exactly half way between a tetrag-
onal and an orthorhombic minimum. Therefore, the microstructure displayed in Figure 7, alternating
between the two minima, develops. As expected, the lamination occurs approximately across the habit
plane of the system.

Since the main thrust of this article is the derivation of an explicit expression of the potential energy
at the triple point, we contrast the numerical findings with those for the setting where the potential
energy is given as a lowest-order polynomial expansion. Figure 8 displays the result of a simulation with
the energy presented here replaced by the conventional polynomial Landau expansion. The parameters
in this simulation are

F t−o
tilt =

(
3.5768 3.6027
−3.6027 −3.6287

)
· 10−3 and γ = 0.4, β = 0.1.
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Figure 8: Simulation using the same parameters as in Figure 7, but employing the polynomial energy
landscape from [11]. Shown is the order parameter %0, as in Figure 7 (right). No clear distinction
between the phases can be observed (note that the scaling of the order parameter is 10−5, so the
variation is two orders of magnitude smaller).

We take the energy from [11], restricted to the e1-e2-e6-plane and evaluated at the triple point temper-
ature (840 K) and pressure (1.8 GPa). This energy uses a slightly different two-dimensional reduction
of the system, therefore the minima are at slightly different positions. Again, there is a mountain pass,
that is, a transformation path. It turns out that the energy is essentially flat along the path between the
minima, with an extremely low energy barrier. In other words, the conventional polynomial expansion
yields an unrealistic estimate of the energy barrier, unlike the method presented here. Consequently,
for this polynomial energy, there is no clear distinction between the orthorhombic and the tetragonal
phase in the simulation, even though the affine tilt was again chosen to be exactly half-way in be-
tween the tetragonal and an orthorhombic minimum on a rank-one connection. The surface energy and
the viscosity are the same as in the previous simulation. The simulation result is shown in Figure 8.
The two phases in the polynomial energy would lie at %0 = 0.0 (tetragonal) and %0 = 2.0767 · 10−4

(orthorhombic), respectively.
In Figure 9, the relaxed state of a simulation with tilt

F t−m
tilt =

(
1.0110 · 10−2 −1.6135 · 10−1

−6.0095 · 10−4 −8.8811 · 10−3

)
and γ = 0.4, β = 0.1.

is presented. The value for F t−m
tilt lies exactly half way between a tetragonal and a monoclinic minimum

on a rank 1 connection between the two. The arrangement of phases in the resulting picture is complex,
due to a strong influence of the boundary. One can observe, however, that there are separate regions
where the strain is close to the tetragonal or orthorhombic phase and close to the monoclinic phase,
respectively.

These results show that the energy landscape constructed here is very well suited for use in finite
element codes.

5 Discussion

With regard both to the theory and applications of solid phase transitions, there is a general interest
in devising a methodology that allows for the integration of experimental data for multiphase materials
into an energy density via a straightforward and phenomenological, yet natural approach. Here, we
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Figure 9: Elastic energy density (left) and order parameter %0 (right) of the fully relaxed state of a
simulation with initial and boundary conditions on a rank 1 connection in between the tetragonal and
the monoclinic minima of the energy. A complex arrangement of phases has formed, with boundaries
of higher energy in between.

propose the path-profile construction. The intuition behind this method is the observation that a good
phenomenological description of the energy landscape needs to describe the local properties of the stable
phases correctly, and has to offer a phenomenologically appropriate transformation path. The classical
approach with invariant polynomials is well suited for the former, but not for the latter. We develop a
method to model a phenomenological transformation path such that local properties can be fitted with
relative ease. The approach has recently been used in a less explicit fashion to model one contribution
to an energy for InTl [16]. Here, we demonstrate the simplicity of the method by choosing a material
with a triple point. We first derive the Landau contribution, which only relies on order parameters, and
apply the path-profile construction. The energy as a function of the three-dimensional strain tensor is
then obtained via extension.

The approach proposed here is general, even if the specific examples are genuine for zirconia. We
noticed that the process of fitting is remarkably easy, since the construction with the sliding paraboloid
greatly facilitates the process. The calculations for the fitting process were done in Maple, where a
straightforward implementation requires at most a few seconds to complete on a personal computer.

It is possible to construct the energy entirely in the orbit space, rather than composing it from
three different terms, as is the case here. Although the approach to work in the full orbit space may
be more elegant and ultimately more straightforward, some technical aspects remain to be overcome.
Namely, it becomes more difficult to rule out minima on the boundary. This matter will be the topic
of a future investigation. Also, it is not evident which set of invariants should be chosen. In the low-
dimensional approach, as advocated here, it is easy to test and compare different choices, while the
analogous procedure becomes much more involved when the number of invariants involved is increased.

It has been noted that using a lowest-order polynomial as the Gibbs energy density necessarily
introduces a second orthorhombic phase for which experimental evidence seems to be unavailable [11].
While this phase is stable at zero pressure only for a small range of temperatures above 1520 K and
becomes unstable for pressure over 1.35 GPa [11], it has been shown to be the most stable phase for
the polynomial energy under various shear loads at room conditions [12]. Since the existence of this
phase may have implications on zirconia as a toughening agent near crack tips, it seems desirable to
examine whether other energy densities also predict this phase. The present isothermal energy density
may serve as a basis for such investigations.
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